

Department of Chemistry

Data Book (revised October 2005)

Contents

Periodic table of the elements	inside front cover
Physical constants and conversion factors	1
Greek alphabet	3
Series	3
Stirling's formula	3
Determinants	3
Integrals	4
Integration by parts	4
Trigonometrical formulae	4
Cosine formula	4
Spherical polar coordinates	5
Laplacian	5
Spherical harmonics	5
Ladder operators	5
Character tables	6 – 11
Selected tables for descent in symmetry	11
Reduction of a representation	12
Projection operators	12
Direct products	12
Antisymmetrized squares	12
Flow chart for determining molecular point groups	13
Space groups (GEPs and SEPs)	14
Parameters for selected magnetic nuclei	15
Amino acids	16
Nucleotide bases	17

H 1 1.008																	He 2 4.003
Li 3 6.94	Be 4 9.01					ato: mear	symbol mic num atomic	iber mass				B 5 10.81	C 6 12.01	N 7 14.01	O 8 16.00	F 9 19.00	Ne 10 20.18
Na 11 22.99	Mg 12 24.31								-			Al 13 26.98	Si 14 28.09	P 15 30.97	S 16 32.06	Cl 17 35.45	Ar 18 39.95
K 19 39.102	Ca 20 40.08	Sc 21 44.96	Ti 22 47.90	V 23 50.94	Cr 24 52.00	Mn 25 54.94	Fe 26 55.85	Co 27 58.93	Ni 28 58.71	Cu 29 63.55	Zn 30 65.37	Ga 31 69.72	Ge 32 72.59	As 33 74.92	Se 34 78.96	Br 35 79.904	Kr 36 83.80
Rb 37 85.47	Sr 38 87.62	Y 39 88.91	Zr 40 91.22	Nb 41 92.91	Mo 42 95.94	Tc 43	Ru 44 101.07	Rh 45 102.91	Pd 46 106.4	Ag 47 107.87	Cd 48 112.40	In 49 114.82	Sn 50 118.69	Sb 51 121.75	Te 52 127.60	I 53 126.90	Xe 54 131.30
Cs 55 132.91	Ba 56 137.34	La* 57 138.91	Hf 72 178.49	Ta 73 180.95	W 74 183.85	Re 75 186.2	Os 76 190.2	Ir 77 192.2	Pt 78 195.09	Au 79 196.97	Hg 80 200.59	Tl 81 204.37	Pb 82 207.2	Bi 83 208.98	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac+ 89						•									

	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
*Lanthanides	58 140.12	59 140.91	60 144.24	61	62 150.4	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.04	71 174.97
+Actinides	Th 90 232.01	Pa 91	U 92 238.03	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

	Constants				E	nergy Conversion	Factors	
Name	Symbol and definition	Value (uncertainty)	Unit		ſ	kJ mol ⁻¹	cm^{-1}	K
	Я	3.141592653589		1 J	1	$6.0221.10^{20}$	$5.0341.10^{22}$	$7.2429.10^{22}$
	в	2.718281828459		1 hartree	4.35974.10	¹⁸ 2625.5	219475	315773
	$\ln 10 = 1/\log_{10} e$	2.302585092994						
Speed of light	С	2.99792458	$10^8{ m ms^{-1}}$	1 eV	1.60218.10	¹⁹ 96.485	8065.54	11604
Planck's constant	h	6.6260693(11)	$10^{-34} \mathrm{J_S}$	1 kJ mol^{-1}	$1.66054.10^{-1}$	21 1	83.5935	120.27
	$\bar{h} = h/2\pi$	1.05457168(18)	$10^{-34} \mathrm{J_S}$		1 007 15 10-	23 11 023 10-3	-	1,1200
Avogadro's constant	N_A	6.0221415(10)	$10^{23}\mathrm{mol}^{-1}$	l cm ⁻¹	1.98645.10	^{2,2} 11.963 10 ⁻³	-	I.4388
Elementary charge	в	1.60217653(14)	10^{-19} C	1 K	$1.38065.10^{-1}$	²³ 8.3145 10 ⁻³	0.69504	1
Electron rest mass	m_e	0.91093826(16)	10^{-30} kg	1 H ₇	6 62607 10 ⁻	34 3 9903 10^{-11}	3 3356 10-11	4 7992 10 ⁻¹¹
Atomic mass unit	$m_u = 1 \mathrm{gmol}^{-1}/N_A$	1.66053886(28)	10^{-27} kg	7777 1	01-10070-0			01.7//.10
Proton rest mass	m_p	1.67262171(29)	10^{-27} kg	Note: the ene	erev of a nhote	n with recinrocal	wavelength (waver	number) $1/\lambda_{c}$ and
Neutron rest mass	m_n	1.67492728(29)	10^{-27} kg	frequency v is	$hc/\lambda = hv. T$	ne energy correspo	nding to a temperat	ure T is $k_B T$.
Faraday constant	$F = N_A e$	9.64853383(83)	$10^4 \mathrm{C} \mathrm{mol}^{-1}$	1		,))	
Boltzmann constant	k_B	1.3806505(24)	$10^{-23} \mathrm{JK}^{-1}$					
Molar Gas constant	$R = N_A k_B$	8.314472(15)	$J mol^{-1} K^{-1}$					
Permeability of vacuum	μ_0	$4\pi imes 10^{-7}$	Hm^{-1}			Other conversion	factors	
Permittivity of vacuum	$\epsilon_0 = 1/(\mu_0 c^2)$	8.8541878	$10^{-12} \mathrm{Fm}^{-1}$	I	4+5	~	10 -10	
	$4\pi\epsilon_0$	1 1126501	$10^{-10} { m Fm}^{-1}$	Eron Eron	6 m		10 III 4 104 T	
Bohr magneton	$\mu_B = e\hbar/2m_e$	9.27400949(80)	$10^{-24}{ m JT}^{-1}$		gy		4.104J	
Nuclear magneton	$\mu_N = e\hbar/2m_p$	5.05078343(43)	$10^{-27} { m J} { m T}^{-1}$	Fres	sure	$\operatorname{Atm} = /60 \operatorname{Iorr}$	101 025 TU	
Stefan-Boltzmann constant	$\sigma = 2\pi^5 k_B^4 / 15h^3 c^2$	5.670400(40)	$10^{-8}{Wm^{-2}K^{-4}}$			lorr = mm Hg	133.3Pa	
Bohr radius	$a_0 = 4\pi\epsilon_0\hbar^2/m_ee^2$	0.5291772108(18)	$10^{-10}{ m m}$	1		oar ,	10 ² Pa	
Hartree energy	$E_h=e^2/4\pi\epsilon_0a_0$	4.35974417(75)	10^{-18} J	Radi	ioactivity	pecquerel, Bq	$1 S^{-1}$	
Fine structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	7.297352568(24)	10^{-3}			curie, Ci	3.7.10 ¹⁰ Bq	c.
	α^{-1}	137.035986		Chai	rge	ssu	3 33564 10 ⁻	10C
				Dipo	ole moment	$lebye = 10^{-18} esu$	cm 3.33564.10 ⁻	30 Cm
CODA	recommended value	es, December 2002				$a_0 u_0 = e a_0$	8.478358.10	$^{-30}$ C m
The estimated st	http://physics.nist.gov tandard uncertainty, in	v/constants parentheses after the	value,	Tem	perature	C	$0 \circ C = 273.1$	5 K
applies	to the least significant	digits of the value.		The 'entropy' cal/mol/°C. He	unit' (e.u.) us owever some a	ed for entropies of athors use the same	activation is usual symbol for the SI ι	ly the c.g.s. unit nit, $J \mod^{-1} K^{-1}$.

Greek Alphabet

А	α	alpha	Η	η	eta	Ν	ν	nu	Т	τ	tau
В	β	beta	Θ	θ, ϑ	theta	Ξ	ξ	xi	Υ	υ	upsilon
Γ	γ	gamma	Ι	ι	iota	0	0	omicron	Φ	ϕ, ϕ	phi
Δ	δ	delta	Κ	к	kappa	Π	π	pi	Х	χ	chi
E	ε	epsilon	Λ	λ	lambda	Р	ρ	rho	Ψ	Ψ	psi
Ζ	ζ	zeta	Μ	μ	mu	Σ	σ	sigma	Ω	ω	omega

Series

Geometrical progression

$$S_n = a + az + az^2 + \dots + az^{n-1} = a \frac{1-z^n}{1-z}$$
. $S_{\infty} = \frac{a}{1-z}$ when $|z| < 1$.

Power series

$$\begin{split} \exp z &= 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots \\ \cos z &= \frac{e^{iz} + e^{-iz}}{2} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots \\ \sin z &= \frac{e^{iz} - e^{-iz}}{2i} = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \\ (1+z)^p &= 1 + pz + \frac{p(p-1)}{2!} z^2 + \frac{p(p-1)(p-2)}{3!} z^3 + \dots, \qquad |z| < 1 \\ \ln(1+z) &= z - \frac{z^2}{2} + \frac{z^3}{3} - \dots - \frac{(-z)^n}{n} - \dots, \qquad |z| < 1 \end{split}$$

Stirling's formula

 $\ln n! \approx n \ln n - n$ for large n

Determinants

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

In general,

$$\det(\mathbf{A}) = \sum_{j} A_{ij} C_{ji} \quad (i \text{ fixed at any value}),$$

where the cofactor C_{ji} is $(-1)^{i+j}$ times the determinant of the matrix obtained by deleting the *i*th row and the *j*th column of **A**. For example,

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}.$$

Integrals

$$\int_{-\infty}^{\infty} \exp(-ax^2) dx = \sqrt{\pi/a}, \quad (a > 0)$$

$$\int_{-\infty}^{\infty} x^{2n} \exp(-ax^2) dx = 1 \times 3 \times 5 \times \dots \times (2n-1) \frac{\sqrt{\pi/a}}{(2a)^n} \quad (n \ge 1; a > 0)$$

$$\int_{0}^{\infty} r^n \exp(-ar) dr = \frac{n!}{a^{n+1}} \quad (n \ge 0; a > 0)$$

$$\int_{0}^{\pi/2} \sin^m \theta \cos^n \theta d\theta = \frac{m-1}{m+n} \int_{0}^{\pi/2} \sin^{m-2} \theta \cos^n \theta d\theta$$

$$= \frac{n-1}{m+n} \int_{0}^{\pi/2} \sin^m \theta \cos^{n-2} \theta d\theta,$$

so that

$$\int_0^{\pi/2} \sin^m \theta \cos^n \theta \, d\theta = \frac{(m-1)(m-3)\dots(n-1)(n-3)\dots}{(m+n)(m+n-2)(m+n-4)\dots} \times C,$$

where $C = \pi/2$ if *m* and *n* are both *even*, and C = 1 otherwise. E.g.:

$$\int_0^{\pi/2} \sin\theta \cos^3\theta \, d\theta = \frac{2}{4.2} = \frac{1}{4}; \qquad \int_0^{\pi/2} \sin^2\theta \cos^2\theta \, d\theta = \frac{1 \cdot 1}{4.2} \frac{\pi}{2} = \frac{\pi}{16}.$$

Integration by parts

$$\int_{a}^{b} u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = [uv]_{a}^{b} - \int_{a}^{b} \frac{\mathrm{d}u}{\mathrm{d}x} v \,\mathrm{d}x$$

Trigonometrical formulae

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\cos A \cos B = \frac{1}{2} (\cos(A + B) + \cos(A - B))$$
$$\sin A \sin B = \frac{1}{2} (\cos(A - B) - \cos(A + B))$$
$$\sin A \cos B = \frac{1}{2} (\sin(A + B) + \sin(A - B))$$
$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$
$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$
$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$
$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Cosine formula
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Spherical Polar Coordinates

Relationship with Cartesian coordinates

$$x = r\sin\theta\cos\phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$
$$y = r\sin\theta\sin\phi \qquad \theta = \arccos(z/r)$$
$$z = r\cos\theta \qquad \phi = \arctan(y/x)$$

Integration

$$\int \dots dV = \int_{r=0}^{\infty} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \dots r^2 \sin\theta dr d\theta d\phi$$

Laplacian

$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$$
$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Psi}{\partial \varphi^2}$$

Spherical Harmonics

$$Y_{lm}(\theta,\phi) = \sqrt{rac{2l+1}{4\pi}}C_{lm}(\theta,\phi),$$

where

$$C_{lm}(\theta, \varphi) = \left[\frac{(l-|m|)!}{(l+|m|)!}\right]^{\frac{1}{2}} P_l^{|m|}(\cos\theta) e^{im\varphi} \times \begin{cases} (-1)^m & \text{for } m > 0, \\ 1 & \text{for } m \le 0. \end{cases}$$

Here P_l^m is an associated Legendre polynomial. In particular,

$$C_{00} = 1,$$

$$C_{10} = \cos \theta = z/r,$$

$$C_{1,\pm 1} = \mp \sqrt{\frac{1}{2}} \sin \theta e^{\pm i\varphi} = \mp \sqrt{\frac{1}{2}} (x \pm iy)/r,$$

$$C_{20} = \frac{1}{2} (3\cos^2 \theta - 1) = \frac{1}{2} (3z^2 - r^2)/r^2,$$

$$C_{2,\pm 1} = \mp \sqrt{\frac{3}{2}} \cos \theta \sin \theta e^{\pm i\varphi} = \mp \sqrt{\frac{3}{2}} (zx \pm izy)/r^2,$$

$$C_{2,\pm 2} = \sqrt{\frac{3}{8}} \sin^2 \theta e^{\pm 2i\varphi} = \sqrt{\frac{3}{8}} (x^2 - y^2 \pm 2ixy)/r^2.$$

Ladder Operators

$$\hat{J}_{\pm} \equiv \hat{J}_x \pm i \hat{J}_y;$$
 $\hat{J}_{\pm} | J, M \rangle = \sqrt{J(J+1) - M(M\pm 1)} | J, M \pm 1 \rangle$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_i	E i					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A_g	$ 1 1 \\ 1 -1 $	<i>R</i> , <i>x</i> : <i>y</i> : <i>z</i>	$R_x; R_y; R_z$	$x^2; y^2; z^2; z^2$	xy; xz; yz	:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 • u	1 1	л, у, 2				_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_s	$E \sigma_h$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>A</i> ′	1 1	$x; y = R_z$	x ² ;	$y^2; z^2; xy$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>A''</i>	1 -1	$z = R_x;$	R_y .	xz;yz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ſ	[
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{C}_2	$E C_2^z$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A P	1 1	$z R_z$	$x^{2};$	$y^2; z^2; xy$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 -1	$x, y K_x, I$	ч у .	12, <i>Y</i> 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{2v}	$E C_2^z$	$\sigma^{xz} \sigma^{yz}$			_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_1	1 1	1 1	z	$x^2; y^2; z^2$	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_2	1 1	-1 -1	R	z xy		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B_1	1 -1	1 - 1	$x R_{1}$	y XZ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₂	1 -1	-1 1	y K	x <i>y</i> 2.	_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{2h}	$E C_2^z$	$i \sigma^{xy}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_g	1 1	1 1	R_z	$x^2; y^2; z^2$; <i>xy</i>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B_g	1 -1	1 - 1	$R_x; R_z$, xz; yz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A_u B_u	1 1 -1	-1 -1 1	x; y			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathcal{D}_2	$E C_2^z$	$C_2^y C_2^x$			_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	1 1	1 1		$x^2; y^2; z^2$	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B_1	1 1	-1 -1	$z R_z$	xy		
$\frac{D_3}{D_2} = \frac{1}{E} \frac{1}{2S_1} \frac{1}{C_2} \frac{1}{2S_2} \frac{1}{2S_2}$	B_2 B_2	1 -1 1 -1	1 - 1 -1 1	$y R_y$ r R	xz		
$D_{12} = E - 2S_{12} - C^2 - 2C' - 2S_{12}$	5			л Лу	. y.	_	
D_{2d} L 254 C_2 $2C_2$ $20d$	\mathcal{D}_{2d}	$E 2S_4$	$C_2^z 2C_2'$	$2\sigma_d$			
A_1 1 1 1 $x^2 + y^2; z^2$	A_1	1 1	1 1	1			$x^2 + y^2; z^2$
$A_2 = \begin{bmatrix} 1 & 1 & 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} R_z \\ R_z \end{bmatrix}$	A_2	1 1	1 -1	-1		R_z	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B_1	1 -1	1 1	-1 1	_		$x^2 - y^2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_2	$ \begin{array}{cccc} 1 & -1 \\ 2 & 0 \end{array} $	-2 0	0	(x,y) (1)	(R_x, R_y)	xy (xz, yz)

Character tables for some important symmetry groups

\mathcal{D}_{2h}	$E C_2^z C_2^y$	C_2^x <i>i</i> σ^{xy} σ^{xz} σ^{yz}	
A_g B_{1g} B_{2g} B_{3g} A_u B_{1u} B_{2u} B_{3u}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^{2}; y^{2}; z^{2}$ $R_{z} xy$ $R_{y} xz$ $R_{x} yz$ z y x
G	F C_2 C_2^2	$\omega = \exp(2\pi i)$	(3)
$ \begin{array}{c} A \\ E \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{z}{x-iy} = \frac{R_z}{R_x - iR_y} \frac{x^2}{xz-iyz};$ $\frac{x+iy}{x+iy} = \frac{R_x + iR_y}{R_x + iR_y} \frac{xz+iyz}{xz+iyz};$	$\frac{y^{2}}{y^{2}+y^{2}; z^{2}}$ $\frac{x^{2}+2ixy-y^{2}}{x^{2}-2ixy-y^{2}}$
(₂₁₁	$E 2C_2^z 3\sigma_y$		
$ \begin{array}{c} A_1 \\ A_2 \\ E \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} z & x^2 \\ R_z \\ (x,y) & (R_x,R_y) & (xz,yz) \end{bmatrix}$	$x^{2} + y^{2}; z^{2}$; $(x^{2} - y^{2}, 2xy)$
\mathcal{D}_3	$E 2C_3^z 3C_2$		
$\begin{array}{c} A_1 \\ A_2 \\ E \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} x^2 \\ z \\ (x,y) \end{array} \begin{pmatrix} R_z \\ R_x, R_y \end{pmatrix} (xz, yz); $	$x^{2} + y^{2}; z^{2}$ $x (x^{2} - y^{2}, 2xy)$
\mathcal{D}_{3d}	E 2 C_3 3 C_2	$i 2S_6 3\sigma_d$	
A_{1g} A_{2g} E_{g} A_{1u} A_{2u} E_{u}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^{2} + y^{2}; z^{2}$ R_{z} $(R_{x}, R_{y}) (xz, yz); (x^{2} - y^{2}, 2xy)$
	2 - 1 0	2 1 0 (x,y)	
	2 -1 0		

C_{4v}	Ε	$2C_4$	C_4^2	$2\sigma_v$	$2\sigma_d$			
A_1	1	1	1	1	1	z		$x^2 + y^2; z^2$
A_2	1	1	1	-1	-1		R_z	
B_1	1	-1	1	1	-1			$x^2 - y^2$
B_2	1	-1	1	-1	1			xy
Ε	2	0	-2	0	0	(x,y)	(R_x,R_y)	(xz, yz)

Note: The σ_v planes in C_{4v} coincide with the *xz* and *yz* planes.

\mathcal{D}_{4h}	Ε	$2C_4$	C_4^2	$2C_2$	$2C'_2$	i	$2S_4$	σ_h	$2\sigma_v$	$2\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2; z^2$
A_{2g}	1	1	1	-1	-1	1	1	1	-1	-1	R_z	
B_{1g}	1	$^{-1}$	1	1	-1	1	-1	1	1	$^{-1}$		$x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1	1	-1	1		xy
E_g	2	0	$^{-2}$	0	0	2	0	$^{-2}$	0	0	(R_x, R_y)	(xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	1	-1	-1	-1	-1	-1	1	1	z	
B_{1u}	1	-1	1	1	-1	$^{-1}$	1	$^{-1}$	-1	1		
B_{2u}	1	-1	1	-1	1	$^{-1}$	1	$^{-1}$	1	-1		
E_u	2	0	-2	0	0	-2	0	2	0	0	(x,y)	
	-											

Note: The C_2 axes in \mathcal{D}_{4h} coincide with the *x* and *y* axes, and the σ_v planes with the *xz* and *yz* planes.

Note that the quantities $\eta_{\pm} \equiv$	$\frac{1}{2}(\sqrt{5}\pm 1)$	satisfy $\eta_{\pm}^2 = 1$	$1 \pm \eta_{\pm}$ and γ	$\eta_+\eta=1.$
--	------------------------------	----------------------------	---------------------------------	-----------------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{5v}	$E 2C_5 2C_5^2 5\sigma_v$	$\eta_{\pm} = \tfrac{1}{2}(\sqrt{5}\pm 1)$
I	$A_1 \\ A_2 \\ E_1 \\ E_2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} z & x^{2} + y^{2}; z^{2} \\ R_{z} \\ (x, y) & (R_{x}, R_{y}) & (xz, yz) \\ & & (x^{2} - y^{2}, 2xy) \end{array}$

\mathcal{D}_5	Ε	$2C_5$	$2C_{5}^{2}$	$5C_2$		$\eta_{\pm} = \frac{1}{2}($	$\sqrt{5}\pm1)$
A_1	1	1	1	1			$x^2 + y^2; z^2$
A_2	1	1	1	-1	z	R_z	
E_1	2	η_	$-\eta_+$	0	(x, y)	(R_x, R_y)	(xz, yz)
E_2	2	$-\eta_+$	η_{-}	0		-	$\left(x^2 - y^2, 2xy\right)$

\mathcal{D}_{5d}	$E 2C_5 2C_5^2 5C_2 i 2S_{10}^3 2S_{10} 5\sigma_d$	$\eta_{\pm} = \tfrac{1}{2}(\sqrt{5}\pm 1)$
$\begin{array}{c} A_{1g} \\ A_{2g} \\ E_{1g} \\ E_{2g} \\ A_{1u} \\ A_{2u} \\ E_{1u} \\ E_{2u} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} x^{2} + y^{2}; z^{2} \\ R_{z} \\ (R_{x}, R_{y}) \\ (x^{2} - y^{2}, 2xy) \\ z \\ (x, y) \end{array} $

5

\mathcal{D}_{5h}	$E = 2C_5 = 2C_5^2 = 5C_2 = \sigma_h = 2S_5 = 2$	$2S_5^3 5\sigma_{\nu}$ $\eta_{\pm} = \frac{1}{2}(\sqrt{5}\pm 1)$
$\begin{array}{c} A_1' \\ A_2' \\ E_1' \\ E_2' \\ A_1'' \\ A_2'' \\ E_1'' \\ E_2'' \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
C_{6v}	$E 2C_6 2C_6^2 C_6^3 3\sigma_v 3\sigma_d$	
$\begin{array}{c} A_1 \\ A_2 \\ B_1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z \qquad x^2 + y^2; z^2$ R_z
$B_2 \\ E_1 \\ E_2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x,y) (R_x,R_y) \qquad (xz,yz) \\ (x^2 - y^2, 2xy)$
\mathcal{D}_6	$E 2C_6 2C_6^2 C_6^3 3C_2 3C_2'$	
$ \begin{array}{c} A_1 \\ A_2 \\ B_1 \\ B_2 \\ E_1 \\ E_2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	· · · · · ·	
\mathcal{D}_{6h}	$E \ 2C_6 \ 2C_6^2 \ C_6^3 \ 3C_2 \ 3C_2'$	$i \ 2S_3 \ 2S_6 \ \sigma_h \ 3\sigma_d \ 3\sigma_v$
$\begin{array}{c} A_{1g} \\ A_{2g} \\ B_{1g} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
B_{2g} E_{1g} E_{2g}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A_{1u} A_{2u} B_{1u} B_{2u}	$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
E_{1u} E_{2u}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

T	$E 4C_3 4C_3^2 3C_2$	$\omega = \exp(2\pi i/3)$	Cubic
A_1		$x^2 + y^2 + z^2$	Cuon
$E \left\{ \right.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$z^{2} + \omega^{2} x^{2} + \omega y^{2}$ $z^{2} + \omega x^{2} + \omega^{2} y^{2}$	
T_2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x,y,z) (R_x,R_y,R_z) \qquad (yz,xz,xy)$	
T_d	$E 8C_3 3C_2 6S_4$	$6\sigma_d$	
A_1	1 1 1 1	$1 x^2 + y^2 + z^2$	
A_2 E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 ((2 r^2 r^2 y^2) $\sqrt{3}(r^2 y^2)$)	
T_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} & & \\ -1 \\ & & \\ (R_x, R_y, R_z) \end{array} $	
T_2	3 0 -1 -1	$1 \qquad (x,y,z) \qquad \qquad (yz,xz,xy)$	
0	$E 8C_3 3C_4^2 6C_4$	6C ₂	
A_1	1 1 1 1	$1 \qquad \qquad x^2 + y^2 + z^2$	
A_2 E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1 \\ 0 \end{array} \qquad \qquad$	
T_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-1 \qquad ((-2, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3$	
T_2	3 0 -1 -1	1 (<i>xz</i> , <i>xy</i> , <i>yz</i>)	
	-		
\mathcal{O}_h	$E 8C_3 3C_4^2 6C_4$	$6C_2 i 8S_6 3\sigma_h 6S_4 6\sigma_d$	
A_{1g}		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$y^2 + y^2 + z^2$
A_{2g} E_{g}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(-v^2), \sqrt{3}(x^2 - v^2))$
T_{1g}^{g}	3 0 -1 1	-1 3 0 -1 1 -1 (R_x, R_y, R_z)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
T_{2g}	3 0 -1 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	xz, xy, yz)
A_{1u} A_{2u}		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
E_u	2 -1 2 0	0 -2 1 -2 0 0	
T_{1u} T_2	$\begin{vmatrix} 3 & 0 & -1 & 1 \\ 3 & 0 & -1 & -1 \end{vmatrix}$	-1 -3 0 1 -1 1 (x,y,z)	
1 2u	5 0 -1 -1		

Icosahedral

I_h	Ε	12 <i>C</i> ₅	$12C_{5}^{2}$	20 <i>C</i> ₃	$15C_{2}$	i	$12S_{10}^3$	$12S_{10}$	$20S_6$	15σ	η	$t_{\pm} = \frac{1}{2}(\sqrt{5}\pm 1)$
A_g	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
T_{1g}	3	η_+	$-\eta_{-}$	0	-1	3	η_+	$-\eta_{-}$	0	-1	(R_x, R_y, R_z)	
T_{2g}	3	$-\eta_{-}$	η_+	0	-1	3	$-\eta_{-}$	η_+	0	-1		
G_g	4	-1	-1	1	0	4	-1	-1	1	0		_
H_g	5	0	0	-1	1	5	0	0	-1	1		$\left(\sqrt{\frac{1}{12}(2z^2-x^2-y^2)}\right),$
Δ	1	1	1	1	1	_1	_1	_1	_1	_1		$\frac{1}{2}(x^2-y^2), xz, xy, yz$
T_u	3	n.	n	0	1	3	n.	n	0	1	$(\mathbf{x},\mathbf{y},\mathbf{z})$	
T_{1u}	2	ין+ מ	-µ_	0	-1	-5	-11+ n	ן <u>י</u>	0	1	(x, y, z)	
I_{2u}	3	-11-	11+	0	-1	-3	Ц_	$-\eta_+$	0	1		
G_u	4	$^{-1}$	-1	1	0	-4	1	1	-1	0		
H_u	5	0	0	-1	1	-5	0	0	1	-1		

$\mathcal{C}_{\infty \nu}$	Ε	$2C^{z}(\alpha)$	•••	∞ $σ_ν$						
Σ^+ (A ₁)	1	1	•••	1		z		$x^2 + y^2$	$^{2};z^{2}$	
Σ^- (A ₂)	1	1	• • •	-1		R_z				
Π (E ₁)	2	$2\cos\alpha$	• • •	0	(<i>x</i>	(R_x, R_y) (R_x, R_y)	,)	(xz, y	(z)	
Δ (E ₂)	2	$2\cos 2\alpha$	• • •	0			($x^2 - y^2$	(2xy)	
Φ (E ₃)	2	$2\cos 3\alpha$	• • •	0					,	
•••			• • •	•••						
	_							~		
$\mathcal{D}_{\infty h}$	E	$2C^{z}(\alpha)$	•••	$\infty \sigma_{v}$	i	$2S^{z}(\alpha)$	•••	∞C_2		
Σ_g^+ (A _{1g})	1	1		1	1	1		1		$x^2 + y^2; z^2$
Σ_{g}^{-} (A_{2g})	1	1	•••	-1	1	1		-1	R_z	
$\Pi_g (E_{1g})$	2	$2\cos\alpha$		0	2	$-2\cos\alpha$		0	(R_x, R_y)	(xz, yz)
$\Delta_g (E_{2g})$	2	$2\cos 2\alpha$	•••	0	2	$2\cos 2\alpha$	•••	0		$(x^2 - y^2, 2xy)$
Φ_g (E _{3g})	2	$2\cos 3\alpha$		0	2	$-2\cos 3\alpha$	•••	0		
			•••	•••	• • •	••••	•••	•••		
Σ_u^+ (A _{1u})	1	1	•••	1	-1	-1	•••	-1	z	
Σ_u^- (A _{2u})	1	1		-1	-1	-1	•••	1		
Π_u (E _{1u})	2	$2\cos\alpha$		0	-2	$2\cos\alpha$		0	(x, y)	
Δ_u (E _{2u})	2	$2\cos 2\alpha$		0	-2	$-2\cos 2\alpha$		0		
Φ_u (E _{3u})	2	$2\cos 3\alpha$		0	-2	$2\cos 3\alpha$		0		
			•••	•••	• • •		•••	•••		

Selected tables for descent in symmetry

C_{2v}	\mathcal{C}_2	\mathcal{C}_s (E, σ^{xz})	\mathcal{C}_s (E, σ^{yz})
A_1	Α	A'	A'
A_2	Α	$A^{\prime\prime}$	A''
B_1	В	A'	A''
B_2	В	$A^{\prime\prime}$	A'

\mathcal{D}_{3h}	C_{3v}	$C_{2\nu}$	\mathcal{C}_s	C_s
		$(\mathbf{\sigma}_h \rightarrow \mathbf{\sigma}^{yz})$	$(E, \mathbf{\sigma}_h)$	(E, σ_v)
A'_1	A_1	A_1	A'	A'
A'_2	A_2	B_2	A'	A''
E'	Ε	$A_1 \oplus B_2$	2A'	$A'\oplus A''$
A_1''	A_2	A_2	A''	A''
A_2''	A_1	B_1	A''	A'
$E^{\prime\prime}$	Ε	$A_2 \oplus B_1$	2 <i>A</i> "	$A'\oplus A''$

Linear

$\mathcal{D}_{\infty h}$	C_{2v}
(x, y, z)	\rightarrow (x,z,y)
Σ_g^+	A_1
Σ_g^-	B_1
Π_g	$A_2 \oplus B_2$
Δ_g	$A_1 \oplus B_1$
Σ_u^+	B_2
Σ_u^-	A_2
Π_u	$A_1 \oplus B_1$
Δ_u	$A_2 \oplus B_2$
•••	

<i>O</i> (3)	O_h	T_d
S_g	A_{1g}	A_1
P_g	T_{1g}	T_1
D_g	$E_g\oplus T_{2g}$	$E\oplus T_2$
F_{g}	$A_{2g} \oplus T_{1g} \oplus T_{2g}$	$A_2 \oplus T_1 \oplus T_2$
G_g	$A_{1g} \oplus E_g \oplus T_{1g} \oplus T_{2g}$	$A_1 \oplus E \oplus T_1 \oplus T_2$
S_u	A_{1u}	A_2
P_u	T_{1u}	T_2
D_u	$E_u \oplus T_{2u}$	$E\oplus T_1$
F_u	$A_{2u}\oplus T_{1u}\oplus T_{2u}$	$A_1 \oplus T_2 \oplus T_1$
G_u	$A_{1u}\oplus E_u\oplus T_{1u}\oplus T_{2u}$	$A_2 \oplus E \oplus T_2 \oplus T_1$

Reduction of a representation

If $\Gamma = a_1 \Gamma^{(1)} \oplus a_2 \Gamma^{(2)} \oplus \cdots \oplus a_n \Gamma^{(n)}$, then

$$a_k = \frac{1}{h} \sum_R \chi^{(k)}(R)^* \chi(R),$$

where $\chi(R)$ is the character of the operation *R* in the representation Γ , $\chi^{(k)}(R)$ is the character of the operation *R* in the representation $\Gamma^{(k)}$, and *h* is the number of elements in the group.

Projection operators

The projection operator for representation $\Gamma^{(k)}$ is

$$\mathcal{P}^{(k)} = \frac{n_k}{h} \sum_R \chi^{(k)}(R)^* R.$$

The projected function $\mathcal{P}^{(k)} f$ obtained by applying $\mathcal{P}^{(k)}$ to any function f is either zero or a component of a basis for representation $\Gamma^{(k)}$.

Direct Products

Generally,

$$\chi^{\Gamma\otimes\Gamma'}(R)=\chi^{\Gamma}(R)\chi^{\Gamma'}(R),$$

and if the resulting representation is reducible it can be reduced in the usual way. Alternatively the following rules can be applied.

Treat g/u and '/'' symmetry separately. For groups with an inversion centre,

$$g \otimes g = u \otimes u = g$$
 and $g \otimes u = u$.

For groups with a horizontal plane σ_h but no inversion centre, single and double primes, ' and ", are used to denote symmetry and antisymmetry with respect to σ_h . Then

$$' \otimes ' = '' \otimes '' = '$$
 and $' \otimes '' = ''$.

Direct products involving nondegenerate representations are easily worked out from the character table. The product of any A or B with any E is an E, and the product of any A or B with any T is a T.

In the cubic groups T_d , O and O_h ,

$$E \otimes E = A_1 \oplus A_2 \oplus E,$$

$$E \otimes T_1 = E \otimes T_2 = T_1 \oplus T_2,$$

$$T_1 \otimes T_1 = T_2 \otimes T_2 = A_1 \oplus E \oplus T_1 \oplus T_2,$$

$$T_1 \otimes T_2 = A_2 \oplus E \oplus T_1 \oplus T_2.$$

For products of E_i with E_j in the axial groups the rules are complicated. If there is only one *E* representation, apart from g/u or '/'' labels, it should be considered as E_1 . We need the order *n* of the principal axis, which is usually obvious — e.g. n = 5 for \mathcal{D}_{5h} — but for \mathcal{D}_{md} with *m* even, n = 2m (because \mathcal{D}_{md} has an S_{2m} axis when *m* is even). (*a*) For $E_i \otimes E_i$:

(i) If E_{2i} exists, then

$$E_i \otimes E_i = A_1 \oplus A_2 \oplus E_{2i}.$$

(ii) Otherwise, if 4i = n then

$$E_i \otimes E_i = A_1 \oplus A_2 \oplus B_1 \oplus B_2$$

(iii) Otherwise

$$E_i \otimes E_i = A_1 \oplus A_2 \oplus E_{|2i-n|}.$$

(b) For
$$E_i \otimes E_j$$
 with $i \neq j$:

(i) If E_{i+j} exists, then

$$E_i \otimes E_j = E_{|i-j|} \oplus E_{i+j}.$$

(ii) If 2(i + j) = n, then

$$E_i \otimes E_j = E_{|i-j|} \oplus B_1 \oplus B_2$$

(iii) Otherwise

$$E_i \otimes E_j = E_{|i-j|} \oplus E_{|i+j-n|}.$$

If there is only one A representation, apart from g/u or '/'' labels, read A_1 and A_2 above as A; similarly for B.

Examples

For $E \otimes E$ in $C_{4\nu}$: there is only one *E* representation, so treat it as E_1 . Rule a(i) doesn't apply, because E_2 doesn't exist, but a(ii) applies, so $E \otimes E = A_1 \oplus A_2 \oplus B_1 \oplus B_2$.

For $E_{1g} \otimes E_{2u}$ in \mathcal{D}_{5d} , note first that $g \otimes u = u$. Then we need $E_1 \otimes E_2$, for which rule b(iii) applies, with n = 5, so the result is $E_{1g} \otimes E_{2u} = E_{1u} \oplus E_{2u}$.

Antisymmetrized Squares

The antisymmetric component of $E \otimes E$ or $E_i \otimes E_i$ is always A_2 . In the cubic groups, the antisymmetric part of $T_1 \otimes T_1$ and $T_2 \otimes T_2$ is T_1 .

Space Groups

General Equivalent Positions (GEPs) and Special Equivalent Positions (SEPs)

Space group P2₁

GEPs:

2 @
$$(x_n, y_n, z_n), (-x_n, \frac{1}{2} + y_n, -z_n)$$

SEPs:

None

Space group P2₁/c

GEPs:

4 @
$$(x_n, y_n, z_n), (-x_n, \frac{1}{2} + y_n, \frac{1}{2} - z_n), (x_n, \frac{1}{2} - y_n, \frac{1}{2} + z_n), (-x_n, -y_n, -z_n)$$

SEPs:

4 pairs: 2 @ (0,0,0) and $(0,\frac{1}{2},\frac{1}{2})$ 2 @ $(0,0,\frac{1}{2})$ and $(0,\frac{1}{2},0)$ 2 @ $(\frac{1}{2},0,0)$ and $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ 2 @ $(\frac{1}{2},\frac{1}{2},0)$ and $(\frac{1}{2},0,\frac{1}{2})$

Space group P2₁2₁2₁

GEPs:

4 @
$$(x_n, y_n, z_n), (-x_n, \frac{1}{2} + y_n, \frac{1}{2} - z_n), (\frac{1}{2} + x_n, \frac{1}{2} - y_n, -z_n), (\frac{1}{2} - x_n, -y_n, \frac{1}{2} + z_n)$$

SEPs:

None

isotope	natural abundance (%)	spin, I
${}^{1}\mathrm{H}$	100	$\frac{1}{2}$
$^{2}\mathrm{H}$	$1.5 imes 10^{-2}$	1
${}^{3}\mathrm{H}$	0	$\frac{1}{2}$
⁶ Li	7	1
⁷ Li	93	$\frac{3}{2}$
$^{10}\mathbf{B}$	20	3
$^{11}\mathbf{B}$	80	$\frac{3}{2}$
¹³ C	1	$\frac{1}{2}$
14 N	100	1
15 N	0.4	$\frac{1}{2}$
17 O	3.7×10^{-2}	$\frac{5}{2}$
19 F	100	$\frac{1}{2}$
²³ Na	100	$\frac{3}{2}$
²⁷ Al	100	$\frac{5}{2}$
²⁹ Si	5	$\frac{1}{2}$
³¹ P	100	$\frac{1}{2}$
51 V	100	$\frac{7}{2}$
⁵⁷ Fe	2	$\frac{1}{2}$
⁷⁷ Se	8	$\frac{1}{2}$
103 Rh	100	$\frac{1}{2}$
¹⁰⁷ Ag	52	$\frac{1}{2}$
¹⁰⁹ Ag	48	$\frac{1}{2}$
¹¹³ Cd	12	$\frac{1}{2}$
¹¹⁹ Sn	9	$\frac{1}{2}$
¹²⁹ Xe	26	$\frac{1}{2}$
195 Pt	34	$\frac{1}{2}$
203 Tl	30	$\frac{1}{2}$
²⁰⁵ Tl	70	$\frac{1}{2}$
²⁰⁷ Pb	23	$\frac{1}{2}$

Parameters for selected magnetic nuclei*

*The list is not exhaustive.

Amino acids

Name	Three-letter code	Single-letter code	Side chain, R =
Serine	Ser	S	—СН ₂ ОН
Threonine	Thr	Т	—СН(СН ₃)ОН
Cysteine	Cys	С	—CH₂SH
Methionine	Met	М	CH ₂ CH ₂ SMe
Aspartic acid	Asp	D	
Asparagine	Asn	Ν	-CH ₂ CONH ₂
Glutamic acid	Glu	Е	$-CH_2CH_2COO^-$
Glutamine	Gln	Q	-CH ₂ CH ₂ CONH ₂
Lysine	Lys	K	$CH_2CH_2CH_2CH_2NH_3^+$
Arginine	Arg	R	$-CH_2CH_2CH_2NH$
Glycine	Gly	G	—н
Alanine	Ala	А	—Me
Leucine	Leu	L	CH ₂ CHMe ₂
Isoleucine	Ile	Ι	CH(Me)CH ₂ Me
Valine	Val	V	—CHMe ₂
Histidine	His	Н	
Phenylalanine	Phe	F	CH2
Tyrosine	Tyr	Y	CH ₂ OH
Tryptophan	Trp	W	

|--|

*For proline the complete structure of the amino acid is shown.

Name	Abbreviation	Structure
Guanine	G	
Adenine	А	NH2 N N N N N
Cytosine	С	NH ₂ Z Z Z
Thymine	Т	Me NH N N O
Uracil	U	

Nucleotide bases